
1 of 15

Dynamic Speedup Calculation through Self-Analysis

Julita Corbalán and Jesús Labarta
Departament d’Arquitectura de Computadors (DAC)

Universitat Politècnica de Catalunya (UPC)
{juli,jesus}@ac.upc.es

Abstract
In an multiprocessor environment, with applications running concurrently, the

scheduler is responsible for optimizing the system utilization. It distributes processors

among applications according to a scheduling policy. Some policies allocate

processors taking into account information such as the expected speedup. This

information is usually provided by the users to the scheduler as an a priori input, and

it is obtained by running the applications several times with different input sets.

However, the large number of executions needed to obtain an accurate information

constitute the major drawback of this approach, since they may consume a lot of time.

A recent work has suggested that the efficiency of the applications can be dynamically

estimated. This information can be used by the scheduler, avoiding the necessity of a

priori information. The goal of our work is to present a different approach to

dynamically compute the speedup achieved by parallel applications in order to

provide this information to the scheduler. This approach is based on the traditional

speedup equation. We will show that the dynamically calculated speedup approaches

the speedup calculated as the relationship between the parallel execution with one

processor and the parallel execution with P processors.

1 Introduction

In a multiprocessor environment, with parallel applications sharing the available resources, the dis-

tribution of processors is a key issue to obtain a good system utilization. The scheduler is respon-

sible for distributing processors among applications. This distribution can be performed taking into

account several parameters such as the current distribution of processors, the time that the applica-

tions are waiting to run, the number of processors requested by each application, the amount of

time consumed by the applications, or the amount of work of the system. These parameters are ei-

ther already known or can be directly measured by the scheduler.

2 of 15

However, many researchers have shown that using application characteristics such as the

speedup or the average parallelism improve the performance of the scheduler [2][3][12]. In partic-

ular, Parsons and Sevcik [13] showed that, if applications executing in a system have different

speedup curves, the knowledge of this behavior is useful to the scheduler, since it can assign more

processors to those applications that will take advantage of them.

The speedup is the relationship between the sequential and the parallel execution time. Tra-

ditional approaches statically computed the speedup by executing the sequential and the parallel

version several times with different input sets, in order to provide this information to the scheduler.

This was because they assumed that the speedup could not be dynamically calculated since, in

order to obtain the parallel and sequential execution time, applications must run until completion.

However, the speedup obtained by a parallel application depends on several factors such as

the degree of parallelization achieved by the application, its input data, the architecture, and the

placement of the processors. The degree of parallelization of the application is a constant factor.

On the other hand, parameters such as the input set or the placement of the processors (which is

very critical in a NUMA machine like the O2000) may change from one execution to another. Con-

sequently, the speedup can change depending on these variable parameters and cannot be calcu-

lated without executing the application.

Since the knowledge of the speedup is useful to the scheduler, but different executions of one

application may have different speedup curves, in this work we propose a new approach to dynam-

ically measure the speedup. We call our implementationself-analyzer, and it calculates at run-time

the speedup obtained in the parallel regions of the applications. The speedup computation involves

the relationship between two measures: the reference (or baseline) and the parallel execution time.

We propose a mechanism to obtain the reference time without having to run the sequential version,

but it is obtained during the execution of the parallel application. In this way, it will not be neces-

sary to perform several time-consuming executions.

We will show that the speedup calculated1 by our approach corresponds with the speedup cal-

culated with the traditional approach (the relationship between the parallel execution with one pro-

cessor and the parallel execution with P processors). We have also analyzed the overhead

introduced by our mechanism and we have found it negligible.

The remainder of this paper is organized as follows. Section 2 presents the motivations of

this work.Section 3 describes our approach to dynamically compute the speedup in parallel appli-

cations. Section 4 presents the evaluation of our proposal, including both a validation of the

dynamically calculated speedup and the analysis of the introduced overhead. Finally, in Section 5

we summarize the main conclusions of this work.

1. We only focus our attention on the parallel regions of applications.

3 of 15

2 Motivation and Related Work

In this work, we present a new approach to dynamically compute the speedup. Nguyenet al [10]

propose that the efficiency obtained by the parallel applications can be dynamically calculated.

Then, the speedup can also be dynamically computed as a function of the efficiency. Their ap-

proach is calledself-tuning. This enables the scheduler to use such information to make the deci-

sions. In order to calculate the efficiency, they measure the different sources of overheads that cause

loss of efficiency and subtract them from 1.

Figure 1 shows the formulation proposed by Nguyen in [10] to calculate the efficiency and

the relationship between efficiency and speedup[4]. The sources of overhead, showed in Figure 1,

are thesystem overhead, the idlenessandcommunication (processor stall time)2.These compo-

nents were obtained by using the hardware counters provided by the architecture, and by instru-

menting the parallel library.

However, one of the major limitations of this method to calculate the efficiency is that it is

closely dependent on the architecture. In some current multiprocessors systems, such as the Origin

2000[15][6], thestall timecannot be measured, since the corresponding hardware counter is not

provided by the architecture. On the other hand, there are some features of the system that do have

influence on the speedup, and that are not totally taken into account in the previous equation. One

of the most important, which has a significant influence on the performance in the O2000, is the

relationship between the number of cache misses in the parallel and the sequential execution. The

stall timeonly computes the execution time lost due to the access to remote data. However, it does

not take into account the execution time consumed in the access to the local data, which also has a

big impact in the total execution time. This execution time does not remain constant when the num-

ber of processors changes. Nonetheless, it is assumed constant in the equation of Figure 1.

An interesting effect that may appear when running an application in parallel is thesuper-

lineal speedup(i.e. when the speedup achieved withp processors is greater thanp)[5]. It may occur

when the accumulated misses of all processors that are running a parallel application is lower than

the number of misses of the sequential application. This effect cannot be detected using the previ-

ous equation since, in the one hand, it does not consider the cache misses neither in the sequential

execution nor in the parallel one, and, on the other hand, the efficiency, as it is measured, ranges

from 0 to 1, and thus, the speedup will never be greater thanp.

2. In their architecture, communication appears when processors have to access to remote cache, causing a
processor stall.

4 of 15

To conclude, theSelf-Tunningapproach has two major drawbacks. First, it cannot be imple-

mented in many current arquitectures such as the O2000. And second, it does not take into account

that there are arquitectures components, such as the cache, that may improve the performance of

the parallel applications. Therefore, a better approach to compute the speedup must consider the

execution time rather than some particular components of it. And this is what we present in this

work.

3 Self-Analyzer

Ourself-analyzercan correctly work in applications with a particular internal structure. This Sec-

tion describes first the requirements that have to be accomplished by the applications. Then, we

present the methodology that allows a dynamic computation of the speedup, and finally, we discuss

some implementation issues.

3.1 Applications

A great number of scientific applications are characterized by their predictable behavior. These ap-

plications are known asiterative parallel applications[12]. Figure 2 shows the structure of these

applications. We can observe that they are composed of a set of parallel loops inside a sequential

loop. We refer to this structure asiterative parallel region, and, to the set of parallel loops inside

the sequential loop asparallel region.

Since a parallel region is inside a sequential loop, it will be executedn times, wheren is the

number of iterations of the sequential loop. If this parallel region executes always the same code,

with different data, its execution in the iterationi+1 will be similar to its execution in the iteration

i. This characteristic has also been exploited in the self-tuning proposal [10][12], assuming that the

speedup achieved by any subset of iterations will be similar. We will consider a parallel region as

the minimum section of code needed to calculate the speedup.

Speedup p() Eff iciency p() p×=Efficiency p() 1
WT p() UT p()–

WT p()
-- 

 – IT p()
WT p()
-----------------– PST p()

WT p()
-------------------–=

WT(p)= elapsed execution time with p processors

UT(p)= accumulated user-mode execution time

IT(p)= accumulated idle time

PST(p)= accumulated processor stall time

Figure 1: Efficiency and speedup equations. The efficiency is calculated as a function of the sources of
overhead:system overhead, the idlenessandcommunication.The speedup is calculated as a function of the
efficiency.

5 of 15

This characteristic is shared by a large number of scientific applications. In [11] it is shown

that five out of ten SPLASH [14] applications and the seven PerfectClub [1] applications are iter-

ative. Applications that may also be iterative are those that perform computational fluid dynamics,

as for instance thetomcatvfrom the SPECFP95, or those that perform weather prediction like the

swim, from the SPECFP95. Other applications that also follow this scheme are some of the NAS

Benchmarks, such as theBT or theSPand real applications such ascrash simulationsfor cars.

3.2 Dynamic speedup computation

In this Section we present the methodology followed by theself-analyzerto calculate the speedup

achieved by the parallel region of applications. Note that we propose to dynamically compute the

speedup in order to provide this information to the scheduler, so that it can choose an optimal pro-

cessor allocation to reduce the execution time of this part. We assume that the sequential part is

intrinsic to the application and our technique cannot help to reduce its effect.

When theself-analyzerenters aniterative parallel region, it runs a few iterations of this loop

with only one processor in order to calculate the reference. This reference is the average of the exe-

cution time of these iterations executed with one processor. The rest of iterations are executed with

the number of processors available.

During the rest of the loop, theself-analyzercollects the execution time of each iteration of

the parallel region. Every few iterations, the execution times of the parallel region is averaged in

order to achieve a more accurate measure. This average is used to compute the speedup, which is

do

end do

parallel region

Figure 2: Iterative parallel region. Some functions from theself-analyzerare inserted in the source code to
calculate the speedup.

parallel loop!$OMP PARALLEL DO
do
enddo

!$OMP END DO

!$OMP PARALLEL DO
do
enddo

!$OMP END DO

!$OMP PARALLEL DO
do
enddo

!$OMP END DO

Speedup (p)=
Execution time of theparallel region with 1 processors

Execution time of theparallel region with p processor

Figure 3: Traditional speedup equation.

6 of 15

dynamically calculated following the equation presented in Figure 3. Due to the behavior of these

applications, we assume that the dynamically computed speedup for a particular number of proces-

sors will be constant for any set of iterations. Moreover, it will be the same as the speedup obtained

in the complete execution of the iterative parallel region.

The speedup is continuously recalculated in order to detect both, variations in the behavior

of the application and on the number of assigned processors. Each time theself-analyzerdetects a

variation in the number of processors it discards the execution time of the current iteration. If the

self-analyzerdid not discard this iteration, the speedup would fall down due to the overhead intro-

duced by the data movements. These data movements are generated by the re-distribution of itera-

tions.

Another issue concerning the implementation is that theself-analyzerrecalculates the

speedup even when the number of processors does not change. Each time it has a new speedup

value it does not replace the old one. Instead, it maintains a certain history by means of calculating

the speedup as a function of the two values. Figure 4 presents the weight that we assign to the pre-

viously and the current calculated speedup. We assign a weight of 0.6 to the old speedup and a

weight of 0.4 to the new speedup3.

3.3 Implementation issues

In order to calculate the speedup, theself-analyzerextends the parallel library with four function

calls that perform the speedup calculation. These function calls are the following:

• init_parallelism, it is called before the execution of the sequential loop. It initializes

data structures such as timers, or speedup data.

• open_parallel_region, is called at the beginning of eachparallel region. It obtains the

timestamp and manages the number of processors to use (1 orP).

• close_parallel_region, is called at the end of eachparallel region. It obtains the

timestamp, calculates the speedup and informs the scheduler.

• end_parallelism, is called after the execution of the sequential loop.

The code of the parallel applications has to be modified in order to introduce the calls to the

self-analyzer. In this work, these calls have been introduced by hand, but they can be easily gener-

ated by a compiler, following the OpenMP directives.

3. We have tested other combinations and we have found that this provides the best accuracy

Speedup P() SpeedupOld p() 0.6×() SpeedupNew p() 0.4×()+=

Figure 4: We calculate the speedup as a function of the old and the new speedup.

7 of 15

Theself-analyzerneeds the support of a parallel library which allows the user to select the

amount of parallelism to be created on each parallel loop. In this work we use the NthLib [7] as

parallel library with the support of the NANOS compiler[9]. The NANOS compiler processes the

OpenMP directives and generates code to access to the NthLib. The NthLib generates work taking

into account the available number of processors, and it can support dynamic variations in the num-

ber of processors. Moreover, the NthLib interacts with the scheduler, allowing theself-analyzerto

communicate to the scheduler the speedup achieved by the parallel application.

In the next Section, we evaluate whether the speedup calculated by our proposal corresponds

with the real speedup and the overhead introduced in the execution time of the parallel applications.

4 Evaluation

The goal of theself-analyzeris to dynamically calculate the speedup achieved by a parallel region.

In order to calculate the speedup, theself-analyzerexecutes in sequential some iterations of theit-

erative parallel regionwith the aim of obtaining the baseline measure. In this Section we evaluate

whether the dynamically computed speedup corresponds to the traditional speedup (i.e. that

achieved by executing independently the parallel and the sequential version) and whether theself-

analyzer introduces overhead in the execution time.

4.1 Execution environment

In order to evaluate theself-analyzer,we have executed four benchmarks from the SPECFP 95:

tomcatv, swim, apsi and turb3d. These benchmarks have been parallelized by hand using the Open-

MP directives. The calls to theself-analyzerhave been also introduced by hand. They have been

compiled with the NANOS-Compiler[9] and linked with the NthLib parallel library [7][8].

All the measures have been obtained using a Origin 2000 with 64 processors and the execu-

tions have been carried out with the machine dedicated. The kernel threads have been bounded to

the processors in order to avoid great variations in the speedup due to uncontrolled thread migra-

tions.

We also evaluate thehydro2dfrom the SPECFP95, which is an iterative parallel application,

with the particular feature that all the iterations do not execute the same amount of work. These

conditions mean that thehydro2ddoes not comply with the requirements of theself-analyzer. How-

ever, we will also analyze the behavior of our mechanism for this particular case.

4.1 Dynamic speedup calculation

In this Section we evaluate the accuracy of our dynamically computed speedup by comparing it

with the real speedup.

8 of 15

In Figure 6 we show the speedup calculated for the following scenarios:

• TS. Traditional Speedup. The parallel application has been executed with each number

of processors. The speedup has been calculated as the relationship between the execution

time of one andP processors. In addition, it represents the maximum speedup that the

application can achive for each particular number of processors, since its processor

allocation is constant during the complete execution.

• SA(N exec).Self-Analyzer, N executions. The speedup has been dynamically calculated

by theself-analyzer. We have performed one execution for each number of processors.

• SA(1 exec).Self-Analyzer, 1 execution. The speedup has been dynamically computed

by the self-analyzer. We have performed only one execution by application, and the

number of available processors has been dynamically changed every certain number of

iterations. The aim of this curve is to analyze whether is possible to provide the scheduler

with the speedup of the application by running the first iterations with diferent number of

processor. In this way, after some iterations, the scheduler will know the behavior of the

rest of the application depending on the number of assigned processors.

• ST’. Self-Tuning’. a variation of theself-tuning, explained below.

TheST’ is a variation of theself-tuning, proposed in [10]. We have tried to implement the

approach to calculate the efficiency proposed in theself-tuningand we have observed than in our

environment and with our applications, thesystem overheadis negligible. Moreover, as pointed out

before, theprocessor stall timecannot be measured in our system. We have analyzed the bench-

marks and we have observed that the main source of overhead is theidle time. We have instru-

mented the parallel library in order to obtain theidle timeand the speedup is calculated as follows.

We observe that in the case of thetomcatv, swim, apsiandturb3dthe speedup calculated by

theSA(N exec)is very similar to theTSand, most important, the shape of the curves is the same.

In the case on theST’ the calculated speedup does not correspond with theTS, since in this set of

applications, the speedup is basically determined by the relationship between the number of cache

misses in the sequential version and in the parallel one.

Efficiency p() 1
idletime
usertime
----------------------- 

 –= Speedup p() Efficiency p() P×=

Figure 5: The only source of overhead considered is the idleness.

9 of 15

TheSA(1 exec)is able to detect the speedup achieved by theapsiandturb3d, which achieved

low and medium speedup values. In the case of thetomcatvandswimthe curve of the speedup fol-

lows the same shape but the absolute values are lower than the real speedup. The reason is because

a dynamic change in the number of processors causes a dynamic change in the data distribution

and that implies the access to remote pages.

The performance of thetomcatvandswimapplications is closely related to the data place-

ment. They can obtain a super-lineal speedup due to the drastical reduction of the number of cache

misses. Then, if processors are assigned at the beginning of the execution, data is correctly placed.

However, a change in the number of processors allocated in the middle of the execution causes data

reallocation and then, continuos accesses to remote pages. As these applications are strongly

affected by memory allocation, this fact causes a decrement on the speedup achieved by theSA(1

exec).Demonstrating the influence on the execution time of the data placement in a NUMA

machine is out of the scope of this work. But, in order to give an insight about such influence, we

have carried out a simple experiment. We have executed 4 out of 900 iterations of theswimwith 4

processors and the rest with 32 processors, (4*4, 896*32). We have repeated the experiment but

changing the order (896*32, 4*4). The number of iterations is executed with 4 and 32 processors

is the same in both cases. However, we found a difference in the execution time of about the 20%.

Therefore, if we want to provide the scheduler with the complete speedup curve after some

iterations of the sequential loop, the results are influenced by the very frequent processor re-allo-

cation, which implies data re-allocation. This causes an increase of accesses to remote data and

then a decrease in the absolute speedup. Nevertheless, we can observe that the speedup curve of

 1 4 8 16 32 48
0

10

20

30

40
S

pe
ed

up

 1 4 8 16 32 48
0

1

2

3

4

5

S
pe

ed
up

Figure 6: Speedup comparison. The y axis is the calculated speedup and the x axis is the number of
processors available.

 1 4 8 16 32 48
0

10

20

30

40

Sp
ee

du
p

TS
SA(N exec)
SA(1 exec)
ST’

 1 4 8 16 32 48
0

10

20

30

40

S
pe

ed
up

tomcatv swim

apsi turb3d hydro2d

 1 4 8 16 32 48
0

5

10

15

20

S
pe

ed
up

10 of 15

SA(1 exec)is parallel to the TS curve, which at least indicates that theSA (1 exec)curve follows

the same trend that the real curve. One may consider this information enough to give an insigth to

the scheduler about the behavior of the application. On the other hand, if we look at theST’ curves,

neither the absolute numbers, nor the shape of the curves look like the correct curve.

In the case of thehydro2dthe speedup calculated in both theSA(N exec)andSA(1 exec)does

not corresponds with theTS, but with some number of processors the speedup is very close it.

To conclude, results from this Section have shown that our approach to dynamically compute

the speedup approximates very precisely the traditional speedup curves, in terms of the shape of

the curves for theSA(1 exec)and absolute numbers for the more logical comparison,SA(N exec).

Note that, the scheduler, in order to assign an optimal number of processors, does not need a 100%

precise expected speedup but a precise information about the trends, and this is achieved by our

approach.

4.2 Overhead introduced by theself-analyzer

Theself-analyzerexecutes some iterations of theiterative parallel regionin sequential in order to

obtain the baseline measure. This sequential execution of a parallel code may introduce overhead.

In this Section we evaluate the overhead introduced by theself-analyzerin the total execution time.

All the measures have been obtained in the same conditions as in previous Section.

Figure 7 presents the complete execution time of the five benchmarks executed ranging the

number of processors from 1 to 48. The curve with circle marks corresponds to the execution of

the application without theself-analyzer. The curve with box marks corresponds to the execution

time with theself-analyzer, which implies the execution of some of the parallel code in sequential,

and collecting some measures during the complete execution of the application.

We can observe that in thetomcatv, swim, apsiandturb3d theself-analyzerdoes not intro-

duces a significant overhead. The reason stems from the behavior of the sequential loops, which

have a large number of iterations (400). In addition, these iterations are quite short. Consequently,

the impact of the sequential execution of few iterations is minimum. The worst case is theturb3d

where the overhead reaches the 10% in the execution with 48 processors.

The overhead introduced by theself-tuning’ is not significant since we measure the idle time when

threads are not doing useful work for the applications. But, even though this version of theself-

tuningdoes not introduce overhead, we have observed that the access to information such as the

number of cache misses may introduce a lot of overhead. This type of information4 is collected

through system calls and thus it is very costly to obtain.

4. The secondary cache misses is the more related information to the processor stall time

11 of 15

The case of thehydro2dis more critical since it has very few iterations and the first iterations

process more data than the rest. Then, the sequential execution of these iterations have a great

impact on the total execution time.These kind of applications are critical for us: first, we execute

the first iterations in sequential, and second the execution time of these iterations is greater than the

rest.

In the next Section we present some modifications to the initial approach in order to reduce

the overhead in the execution time, for the applications which experiences this particular behavior.

4.3 Enhancements to reduce the overhead

The overhead introduced by theself-analyzerdepends on the applications. If either the appli-

cation executes few iterations or the iterations are expensive in terms of execution time, the over-

head introduced becomes significant.

It seems that the problem lies in the time that the application spends executing with one pro-

cessor. The solution that we propose is increasing the number of processors that we use as reference

from one to either two or four. This is a partial solution, since if we take as reference the execution

time with four processors, we cannot obtain an absolute value of the speedup, as it happens in the

case of one processor. Nevertheless, we expect to obtain the same shape in the speedup curve as in

the case of having the reference taken with one processor.

 4 8 16 32 48
0

20

40

60

80

100

E
xe

cu
tio

n
tim

e
(s

eg
)

tomcatv swim
 4 8 16 32 48

20

40

60

80

Ex
ec

ut
io

n
tim

e
(s

eg
)

All in parallel
with SelfAnalizer

 4 8 16 32 48
0

10

20

30

40

50

E
xe

cu
tio

n
tim

e
(s

eg
)

 4 8 16 32
0

50

100

150

E
xe

cu
tio

n
tim

e
(s

eg
)

apsi turb3d hydro2d

Figure 7: Overhead introduced when executing withself-analyzer.

 4 8 16 32 48
0

20

40

60

80

100

E
xe

cu
tio

n
tim

e
(s

eg
)

12 of 15

Figure 8 presents the overhead introduced by theself-analyzerwhen using as reference the

execution time of one5, two and four processors compared to the execution time of the application

when using the total number of processors available.

We see that, when the number of processors that we use as reference is increased, the over-

head introduced is reduced. In the case of theturb3dthe overhead has been completely eliminated

and in the case of thehydro2dit has been eliminated in the execution with four processors and

reduced from 50% to 27% for 48 processors. We also present the execution time of theswim in

order to present the behavior of an application that initially did not present any overhead.

It seems clear that, if we take the reference measure with four processors, the overhead

should be reduced. But the point now is whether the calculated speedup is correct. Figure 9 shows

the speedup calculated with theself-analyzerwhen using as reference the execution time of one,

two and four processors. We compare these speedups with the traditional speedup, calculated as in

Section 4.1 For theturb3d, we can observe that the elimination of the overhead (as shown in Figure

8) does not influence the accuracy of our approach, and the speedup curves for 2 and 4 processors

as reference measure is almost the same as theTS. For thehydro2dthe reduction of the overhead

slightly increases the accuracy (the curves corresponding to taking the reference at 2 or 4 proces-

sors are closer to theTS than the curve corresponding to 1 processor).

For theswimapplication, we observe a similar behavior in the curves corresponding to hav-

ing the reference measure at 2 or 4 processors than theSA (1 exec)approach, although in these

experiments we have obtained the speedup for each particular number of processors through indi-

vidual executions. Theswimhas the particular feature that it has a few number of parallel loops

before theiterative parallel region. Since these loops are out of the control of theself-analyzer, they

are executed with the total number of processors available, thus they establish the initial data dis-

tribution. Theself-analyzerstarts theiterative parallel regionwith a different number of processors

5. First approach of theself-analyzer

 4 8 16 32 48
0

20

40

60

80

100

E
xe

cu
tio

n
tim

e
(s

eg
)

 4 8 16 32 48
0

10

20

30

40

E
xe

cu
tio

n
tim

e
(s

eg
)

turb3d swim hydro2d

Figure 8: Execution time of the parallel applications when the baseline reference is the execution time of one,
two and four processors. The x axis is the number of processors and the y axis is the execution time.

 4 8 16 32 48
0

20

40

60

80

100

E
xe

cu
tio

n
tim

e
(s

eg
)

All in parallel
SelfAnalizer (ref=1P)
SelfAnalizer (ref=2P)
SelfAnalizer (ref=4P)

13 of 15

than in the previous parallel loops, which implies accessing remote data. Since the execution time

of theswimis very related to the data distribution, the different number of processor used as refer-

ence affects significantly the achieved speedup.

5 Conclusions

In this work we have presented our approach (self-analyzer)to dynamically calculate the speedup

of parallel applications. This information may be useful for the processor scheduler in order to

achieve a better processor distribution.

First, we have analyzed a previous proposal which estimates the speedup based on the effi-

ciency, and the efficiency is computed taking into account a set of sources of loss of performance.

We have found some drawbacks to this approach:

• It considers some parameters of the architecture that cannot be measured in current

architectures

• It does not consider some architecture features that influence on the execution time, as for

instance the relationship between the number of cache misses in the sequential and parallel

version.

Our proposal exploits the characteristics experienced byiterative parallel applications,

which have a set of parallel loops inside a sequential loop. Our methodology to dynamically com-

pute the speedup works as follows: we first obtain the reference measure by executing with one

processor few iterations of the outer loop. Then, the rest of iterations are executed with the number

of available processors. The speedup is computed by dividing the execution time of the parallel ver-

sion by the reference execution time.

The accuracy of our methodology to compute the speedup has been evaluated by comparing

the dynamically computed speedup with that obtained in the traditional way. We also present a

comparison with a particular implementation of theself-tuning proposal.

 1 4 8 16 32 48
0

10

20

30

40

S
pe

ed
up

 1 4 8 16 32 48
0

10

20

30

40

S
pe

ed
up

turb3d swim hydro2d

Figure 9: Speedup calculated when taking as reference the execution time of one, two and four processors. The
x axis is the number of processors and the y axis is the calculated speedup.

 1 4 8 16 32 48
0

5

10

15

20

Sp
ee

du
p

Traditional Speedup
SelfAnalyzer (ref=1P)
SelfAnalyzer (ref=2P)
SelfAnalyzer (ref=4P)

14 of 15

Results show that the dynamically obtained speedup is almost equal to the traditional

speedup, despite of the fact that it is computed at run-time. In addition the overhead introduced is

negligible for almost all applications. In order to reduce the overhead for those applications where

it does have an impact, we have optimized the methodology by means of collecting the reference

measure with four processor instead of one. With this optimization the overhead is almost elimi-

nated.

Finally, one interesting conclusion we extract from this work concerns the fact that the

speedup achieved by a parallel application in a NUMA machine does not only depends on the par-

ticular structure of the application and the number of processors assigned but also it strongly

depends on the memory and processor distribution. Since this allocation is performed at run-time,

it seems reasonable that dynamically computing the speedup is more accurate than calculate it

through several previous executions with different input data, and provide this information to the

scheduler as ana priori input.

Future work includes the extension theself-analyzerto applications that are notiterative par-

allel and the design and implementation of new scheduling policies that can take advantage of the

self-analyzer.

6 Acknowledgments

This work has been supported by the Spanish Ministry of Education under grant CYCIT TIC98-

0511, the ESPRIT Project NANOS (21907) and the Direcció General de Recerca of the Generalitat

de Catalunya under grant 1999FI 00554 UPC APTIND. The research described in this work has

been developed using the resources of the Center of Parallelism of Barcelona (CEPBA).

The authors would like to thank José González and Toni Cortés for their valuable comments

on a draft version of this paper, and Xavier Martorell for kindly providing the NthLib.

7 References

[1] M. Berry, D. Chen, P.Koss, D.Kuck, S.Lo, Y.Pang,L.Pointer, R. Roloff, A. Sameh, E.

Clementi, S.Chin, D. Schneider, G. Fox. P. Messina, D. Walker, C. Hsiung, J. Scharzmeier,

K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum and J, Martin. “The PERFECT Club

Benchmarks: Effective Performance Evaluation of Supercomputers”.The International

Journal of Supercomputer Applications, 3(3):5-40,1989

[2] T.B. Bretch and K. Guha, “Using parallel program characteristics in dynamic

multiprocessor allocation policies”.IEEE Performance Evaluation27&28 (1996) 519-539.

ftp://www.cs.yorku.ca/pub/brecht/Brecht_Guha.ps. York University.

15 of 15

[3] D. L. Eager, R. B. Bunt, “Characterization of programs for scheduling in multiprogrammed

parallel systems”.Performance evaluation 13 (1991) pp. 109-130.

[4] D. L. Eager, J. Zahorjan and E. Lazowska, “Speedup Versus Efficiency in Parallel

Systems”.IEEE TRans. Computer. 38 (3) 1989 pp 408-423

[5] D. P. Helmbold, Ch. E. McDowell, “Modeling Speedup (n) greater than n”.IEEE

Transactions Parallel & Distributed Systems1(2) pp. 250-256, Apr. 1990. University of

California, Santa Cruz.

[6] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly Scalable Server”.Proc. 24

th Int’l Symp. on Computer Architecture, pp. 241-251, 1997

[7] X. Martorell, J. Labarta, N. Navarro and E. Ayguade, “Nano-Threads Library Design,

Implementation and Evaluation”. Dept. d’Arquitectura de Computadors - Universitat

Politecnica de Catalunya Technical Report: UPC-DAC-1995-33, September 1995.

[8] X. Martorell, J. Labarta, N. Navarro and E. Ayguade, “A Library Implementation of the

Nano-Threads Programming Model”.Proc. of the Second International Euro-Par

Conference, vol. 2, pp.644-649, Lyon, France, August 1996

[9] NANOS Consortium, “Nano-Threads Compiler”, ESPRIT Project No 21907 (NANOS),

Deliverable M3D1 July 1999. Also available at Http://www.ac.upc.es/NANOS

[10] T.D. Nguyen,J. Zahorjan, R. Vaswani, “Maximizing Speedup through Self-Tuning of

Processor Allocation”.IPPS 96, Technical report UW-CSE-95-09-02. University of

Washington

[11] T.D. Nguyen,J. Zahorjan, R.Vaswani, “Parallel Application Characterization for

multiprocessor Scheduling Policy Design”.Job Scheduling Strategies for Parallel

Processing, volume 1162 ofLectures Notes in Computer Science. Springer-Verlag96.

University of Washington

[12] T. D. Nguyen,J. Zahorjan, R. Vaswani, “Using Runtime Measured Workload

Characteristics in Parallel Processors Scheduling”.Job Scheduling Strategies for Parallel

Processing, volume 1162 ofLectures Notes in Computer Science. Springer-Verlag96.

University of Washington

[13] E.W. Parsons, K.C. Sevcik, “Benefits of speedup knowledge in memory-constrained

multiprocessors scheduling”, University of Toronto.IEEE Performance Evaluation27&28

(1996) 253-272

[14] J.P.Singh, W.D.Weber, and A. Gupta. “SPLASH: Standford Parallel Applications for

Shared Memory”.Computer Architecture News, 20(1):5-44, 1992

[15] K. C. Yeager, “The MIPS R10000 Superscalar Microprocessor” .IEEE Microvol. 16, 2 pp

28-40.

